
Statistics of Trials and Placements: Circles and Squares. 

The Parameters c and f. 
1. Introduction. 

 

Fig. 1.  Part of a square fractal.  Random color. 

A primary feature of the statistical geometry algorithm (Appendix A) is the power law for the areas of the 
fractalized shapes: 
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   Eq. (1) 

where Ai is the area of the the i-th shape (circles in the present case).  The constant in the numerator is 
chosen so that the sum of all the areas Ai (to infinity) equals the total area A of the region where the 
shapes are to be placed.  When the algorithm is run it is found that the cumulative number of trials ncum 
needed to place n shapes is given by another power law: 

      Eq. (2) f
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for large n.  It should be kept in mind that Eq. (1) is a definition involved in setting up a run, while Eq. (2) 
is an observed result.  The f parameter is found by fitting a power law to somewhat noisy data and is 
subject to the statistical variation involved in such situations, i.e., the f values given here are statistical 
estimates while c values are exact quantities, chosen in the setup procedure. 

There is a relationship between f and c and an important goal here is to obtain data on this relationship for 
circles and squares.   
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     2. The ncum(n) Plots 

 
Fig. 2.  Log-log run plots for statistical geometry fractals.  There are 5 runs for each c value.  Note the extremely 
wide range of the vertical scale  (7 orders of magnitude). 

A plot of the cumulative number of trials ncum versus the number of placed shapes n is the best way to 
represent what happens at run time.  Because of the large range of ncum values and the fact that the large-n 
behavior of ncum(n) is a power law in n, the best way to present the data is in log-log coordinates, i.e., 
log10(ncum(n)) versus log10(n).  In such a plot the slope of a straight line is the exponent of a power law.   

Each such plot is a record of a particular run as a series of dots, and because of the random nature of the 
algorithm it will be different every time the algorithm is run.  For large n the dots merge into a continuous 
line. 
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One of the most interesting questions that arises is "Does the statistical geometry algorithm halt?"  These 
plots provide the best test of this, and given the power-law behavior for large n the evidence suggests that 
the algorithm does not halt1 (at least not for "low" c values).  The total number of trials needed for 
placement of n shapes is quite predictable. 

Increasing c increases the number of trials needed to place n shapes by a huge amount. 

There is a lot of noise in these traces due to the random nature of the placement algorithm.  In general 
they become noisier for higher c and higher n.  This graph can give the reader some idea of how much 
variation to expect in the execution of the algorithm.  Some observations: 

• For low c the relationship between ncum(n) and n goes over to a power law in n for large n. 

• As c increases there is more noise in ncum(n), but the main trend is still a power law. 

• For both circles and squares the ncum(n) behavior shows oscillations about the mean for large c.  
For the circles these oscillations are sinusoidal-looking.  For squares one sees the rather 
surprising feature of sawtooth-like oscillations in some of the curves.  The magnitude of such 
oscillations varies greatly from one run to another.  It is possible that the upper limit of c values 
for which the algorithm works is set by the growth in these fluctuations. 

• For c values higher than about 1.2, squares are much more "packable" than circles and require 
fewer trials under given conditions. 

• The plots get much noisier for high c values, indicating that the amount of computation needed 
for a given c and n is much more variable. 

• As a rule a given percentage fill is most rapidly achieved with a high c value.  The many trials 
per placement is more than offset by the much faster increase in fill percentage. 

• As a rule a given number of placed shapes is most rapidly achieved with a low c value.  The 
percentage fill, however, will be low. 

 
1 What one means by "halt" depends on the assumptions made about the numbers used.  For ordinary floating-point 
digital numbers the algorithm will eventually halt because of the finite precision of the numbers.  (In practice it 
would take an immensely long time to actually reach this limit.)  For a mathematician's numbers, which have infinite 
precision, the evidence is that the process does not halt, but the evidence of computational experiments falls far short 
of a rigorous proof.  In all of the author's statistical geometry computations the algorithm is computed with standard-
precision floating-point numbers .  The rasterized images are created from the high-precision data thus found. 



3. The Relationship Between c and f. 

Values of f were found for each run trace.  Since they vary, they were averaged to produce mean values as 
follows: 

  circles  squares 
c = 1.10  f = 1.11 
c = 1.15  f = 1.19 
c = 1.20  f = 1.27  f = 1.22 
c = 1.25  f = 1.34  f = 1.29 
c = 1.30  f = 1.49  f = 1.35 
c = 1.35  f = 1.63  f = 1.46 
c = 1.40  f = 1.86  f = 1.54 
c = 1.45    f = 1.65 
c = 1.47  f ~ 2.3 

 

Fig. 3.  The relationship between the power-law exponent c and the power-law exponent f (the power law for 
cumulative trials versus the number of placed shapes).  The blue points are for circles and the green ones for 
squares.  The red line is f = c.  Note that f  > c for all data points.  The blue line is an approximate curve-fit to the 
circle data, and is given by f = c + 7(c-1)3. 

It can be seen that f increases very steeply with c beyond about c = 1.2 which shows that the amount of 
computation for a given number of placed shapes increases very rapidly for high c values. 

That data suggests that the upper limit of usable c values is higher for squares than for circle. 
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The data fitting scheme for finding f is described in Appendix B.  The statistical error in f is about ±.02 to 
±.04 (higher for higher c). 
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Appendix A. The Statistical Geometry Algorithm. 

It has been found [1]-[3] that it is possible to create fractal patterns of a wide variety of geometric shapes 
by the following algorithm: 

1. Create a sequence of areas Ai equal to ...,
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(square, rectangle, circle, …) A to be filled. 

2. Sum the areas Ai to infinity, using the Hurwitz zeta2 function 
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.  It will be seen that the sum of all these 

redefined areas is just A. 

4. Let i = 0.  Place a shape having area S0 in the area A at a random position x,y such that it falls entirely 
within area A.  Increment i.  This is the "initial placement". 

5. Place a shape having area Si entirely within A at a random position x,y such that it falls entirely within 
A.  If this shape overlaps with any previously-placed shape repeat step 5.  This is a "trial". 

6. If this shape does not overlap with any previously-placed shape put x,y and the shape dimensions in the 
"placed shapes" data base, increment i, and go to step 5.  This is a "placement". 

                                                 
2 The definitions of the Riemann and Hurwitz zeta functions can be found in Wikipedia. 
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7. Stop when i reaches a set number, percentage filled area reaches a set value, or other. 

One will note that the dimensions of the shapes are nowhere specified.  They are calculated from the 
areas.  A very wide variety of shapes have been found to be "fractalizable" in this way. 

The parameters c and N can have a variety of values.  The parameter c is often in the range 1.2-1.4 with a 
largest usable value around 1.51.  N can be 1 or larger, and need not be an integer. 

By construction the result is a space-filling random fractal -- if the process never halts.  Available 
evidence [1]-[3] says that it does not.  The power law area sequence ensures that it has the fractal 
"statistical self-similarity" (scale-free) property.  And the random search ensures that no two circles will 
ever touch, so that the "gasket" is a single continuous object. 

Appendix B. Data Fitting. 

The raw data were converted to log10 values.  These values were then fitted by least squares adjustment to 
a straight line with the points weighted as the y value (the cumulative number of trials required).  Note 
that the weighting was done with the ncum value, not its logarithm.  This weighting had the effect of 
emphasizing the right-hand side of the curves in Fig. 2 so that the slopes (exponents) found relate to the 
"steady state" part of the data (large n). 

 


