
Statistical Geometry Described. 
1. Introduction; An Example 

A statistical geometry pattern is shown in Fig. 1.  The essence of the algorithm is that circles are placed 
within a bounding circle (or other shape) in order of decreasing size, with a random search each time for 
a position where it does not overlap any previously placed circle.  Available information indicates that 
this algorithm can be used for any shape (not just circles), and that under a wide range of parameters it 
never halts despite the random placement.  It is space-filling. 

   

Fig. 1.  A set of randomly placed circles.  There are 500 circles, with 93% fill.  Modified random color. 

2. The Algorithm Stated. 

Fractals have come to be accepted in mathematics, physics, and several fields of practical application 
since the ground-breaking book by Mandelbrot [1].  The fractals of interest here are generated using the 
following algorithmic rules: 

Report 6 rev 5 -- Jan. 2013 -- John Shier -- Statistical Geometry Described -- p. 1 

 



1. Create a sequence of areas Ai equal to ...,
)3(

1,
)2(

1,
)1(

1,1
cccc NNNN +++

 where c and N are 

constant parameters.  Choose an area (square, rectangle, circle, …) A to be filled. 

2. Sum the areas Ai to infinity, using the Hurwitz zeta1 function 
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redefined areas is just A. 

4. Let i = 0.  Place a shape having area S0 in the area A at a random position x,y such that it falls 
entirely within area A.  This is the "initial placement".  Increment i. 

5. Place a shape having area Si entirely within A at a random position x,y such that it falls entirely 
within A.  If this shape overlaps with any previously-placed shape repeat step 5.  This is a "trial". 

6. If this shape does not overlap with any previously-placed shape, store x,y and the shape 
dimensions in the "placed shapes" data base, increment i, and go to step 5.  This is a "placement". 

7. Stop when i reaches a set number, percentage filled area reaches a set value, or other. 

The linear dimensions of the shapes are nowhere specified.  They are calculated from the area for the 
shape of interest.  A very wide variety of shapes have been found to be "fractalizable" in this way. 

This is a very simple algorithm, easily stated in a few lines of text.  While the algorithm is simple, it is 
able to produce complicated2 results. 

The parameters3 c and N can have a variety of values.  In practice the parameter c is usually in the range4 
1.2-1.4 with a largest usable value around 1.51 for squares (with lower largest c values for hard-to 
fractalize5 shapes).  N can be 1 or larger, and need not be an integer. 

                                                 
1 The definitions of the Riemann and Hurwitz zeta functions can be found in Wikipedia.  The Riemann zeta function 
is historically older than the Hurwitz function, and is the special case where N = 1.  In my images N is usually taken 
to be an integer, but according to the definition of ζ(c,N) it can be any real number ≥ 1.  The Riemann zeta function 
has been much studied in connection with number theory, but it is not evident that such studies have any relevance 
here. 

2 This is a characteristic of many iterative or recursive procedures such as cellular automata and some fractals.  
Random walk, with its vast number of variations of both form and detail provides another example. 

3 The parameters used here describe any case where a pure power law is used.  It is possible to fill the area A up to 
about 30-40% with almost any set of shapes, and the algorithm will still work if you go over to a power law at that 
point, taking A in the setup as the remaining unfilled area. 
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Fig. 2.  Fractalized hearts.  The algorithm, if continued ad infinitum, would eventually fill the entire space with ever-
smaller hearts.  1500 hearts, c = 1.28, N = 4, fill = 82%.  White gasket, inclusive boundaries.  These hearts are 
constructed from a diamond and two semicircles. 

By construction the result is a space-filling random fractal -- if the process never halts6.  Available 
evidence (sec. 10, below) says that it does not halt, at least for c values which are not close to the upper 
limit of c.  The power law area sequence ensures that it has the fractal "statistical self-similarity" (scale-
free) property.   

The random search ensures that no two circles will ever touch (with perfect-resolution numbers), so that 
the "gasket" is a single continuous object.  This is not complete randomness, but constrained randomness.  
Each placement is constrained by the results of all the previous placements.  The degree of constraint 
depends strongly on the parameter c [5]. 

There is no proof that a power law is the only and unique choice for area as a function of i.  The 
dimensionless gasket width [5] offers some explanation of why the power law works so well. 

Failure of the algorithm at high c appears to occur because the process becomes quite noisy and it will be 
seen that in such cases some runs continue indefinitely, while others fail because there is apparently no 
place big enough for the next shape.  Such high-c failures usually occur during the first few placements. 

                                                                                                                                                          
4 If c < 1.2 the number of trials needed to achieve a substantial percentage fill becomes huge.  If c > 1.4 the number 
of trials per placement becomes huge. 

5 This is a new verb.  Given the large variety of shapes that can be made into space-filling fractals by the statistical 
geometry algorithm it seems appropriate. 

6 There are two ways to consider the halting question.  One can ask whether the computational algorithm using 
floating-point numbers halts.  Here the answer is probably yes, since there is a smallest feature size of 1 least-
significant bit.  Or one can ask whether the algorithm halts for a mathematician's numbers, which have infinite 
resolution (one can think of them as floating-point numbers with infinite word length).  The computational trends 
suggest that the algorithm does not halt when using mathematical numbers, but this is a long way from a rigorous 
proof. 
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The algorithm also works in three dimensions.  For that case one considers volumes V instead of areas A 
and follows the same steps given above.  The first constructions of three-dimensional statistical geometry 
fractals were made by Paul Bourke, and can be seen at his web site [4]. 

 

Fig. 3.  A three-dimensional fractal where cubes with random orientation have been fractalized inside a cube.  One 
can only see the cubes on the surface, which have been shaded for easier visualization.  In three dimensions it 
requires placement of more shapes to achieve a given size range than in two dimensions.  5000 cubes, c = 1.2, N = 2.  
Courtesy of Paul Bourke. 

The algorithm also works in one dimension.  For that case one considers lengths L instead of areas A and 
follows the same steps given above.  An illustration of a one-dimensional case is shown below.  The 
result is a somewhat Cantor-like (but random) one-dimensional fractal. 
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Fig. 4.  A one-dimensional statistical geometry fractal.   

One The one-dimensional statistical geometry fractals are less interesting than the two-dimensional case 
as art, but from the viewpoint of theorem-and-proof mathematics they show most of the same features and 
offer a much simpler example. 

It is found generally that the maximum usable c value varies strongly with dimension.  For 1D, c values 
up to about 2.7 can be used.  For 2D (squares) values up to around c = 1.5 are usable.  For 3D (cubes) 
values can only run up to about c = 1.2.

2. Unique Features of the Statistical Geometry Algorithm 

• By construction it is space-filling if it does not halt. 

• Because of the power law it is fractal. 

• It is random, not deterministic. 

• It is not recursive. 

• The shapes are non-touching (non-Apollonian). 

• It allows use of a wide variety of shapes, and one can speak of "fractalizing" a shape or sequence 
of shapes. 

The author is not aware of any other fractal which has the same properties.  It is not a single fractal such 
as the Sierpinski gasket, but a large class of fractals with parameters c and N applicable to a wide variety 
of shapes.  It may be the only non-Apollonian mathematically-defined fractal. 
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As far as the author can determine, fractals of this kind have not been described before his own discovery 
of them in 2010. 

4. Boundaries. 

In the rules it says to choose an area A.  There are two ways to define the boundaries of this area.  One 
way is to simply require all of the shapes to fall completely inside the boundary.  Another way (for 
rectangular boundaries with dimensions X and Y) is to allow shapes to cross the boundary but insist that 
they be periodic, i.e. if a shape at x,y crosses the boundary other identical shapes must be included that are 
placed at x ± X or y ± Y or both.  Using periodic boundaries one can tile the plane with copies of the 
rectangular base pattern (Fig. 6). 

      

Fig. 5  On the left is a periodic boundary with circles, and on the right an inclusive boundary with squares.  It can be 
seen that the largest (green) circle is in two pieces, and similarly for many of the smaller ones. 

The algorithm works equally well with both kinds of boundary.  For fractals with very high c values and 
inclusive boundaries the algorithm sometimes fails because of failure to find places for the first few large 
shapes.  This is less often seen with periodic boundaries.  

Inclusive boundaries are easier to program. 
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Fig. 6  Tiling of four of the periodic circles fractals of Fig. 5.  Random color. 

5. Color Schemes. 

A central feature of these fractals is that there are shapes of all sizes, having the feature of "statistical self-
similarity".  How can you present the fractal image visually in such a way that the eye sees this? 

One of the simplest approaches is to place black shapes on a white background (gasket).  This works 
reasonably well if the number of shapes is modest, but if the fill factor exceeds ~90% the eye tends to blur 
the shapes together, and the smallest shapes are seen as gray. 
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Fig. 7  Color schemes.  (a) Black with white gasket; (b) Random colors with white gasket; (c) Black and white 
alternating, with a red gasket; (d) log-periodic such that circles about the same size are about the same color.  These 
are all the same circle fractal. 

A second method is to place alternating black and white shapes on a red background.  This provides good 
visual contrast at all shape boundaries, but it does have the confusing feature that half the shapes have a 
different color although they are all part of the same sequence.  It allows the eye to see that there are 
shapes of all sizes.  This color scheme is quite useful when one has two shapes, such as mixed circles and 
squares, with one shape black and the other white. 
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A third color scheme is random color.  The colors are chosen with equal probability for any location in 
RGB color space.  This provides good contrast for shapes of all sizes.  Black or white gasket. 

A fourth approach is to use "log-periodic color".  The power laws of a fractal become straight lines in 
logarithmic coordinates, and that is the basis for this color scheme.  Suppose we deal with circles of 
radius ri.  One would then define a variable u = log10(ri/r0) and let the color be a periodic function of u.  
This causes all shapes of about the same size to have about the same color.  The statistical self-similarity 
property is brought out by this color scheme, with each color having a similar distribution. 

3D color schemes.  This is a harder problem.  The use of shading is quite helpful.  Examples can be seen 
at Paul Bourke's web site [4]. 

6. Effect of the Parameter c. 

The useful range of c values varies, depending on the shape.  For hard-to-fractalize shapes the largest 
usable c value will be smaller.  For art the useful range of c usually lies between about 1.15 and 1.4. 

For large c the shape areas decrease more rapidly with i.  The distance between shapes gets smaller as c 
increases, i.e., the packing is tighter [5], [7].  The closer shape-to-shape spacing and the smaller 
dimensionless gasket width mean that more trials are needed with high c for the placement of the i-th 
shape [9].  Correlation effects (see below) are more pronounced with high c. 

It has been found that when one plots the cumulative number of trials ncum needed to place n shapes versus 
n, for large n the data goes over to a power law with exponent f [9].  The value of f is always greater than 
c, and increases sharply as c increases.  This is the basis for the claim that the algorithm never halts.  For 
any number n of placed shapes, there is a predictable number m (sometimes very large) of trials needed to 
place them. 

 



 

Fig. 8  Square fractals with different c values.  Random color, white gasket.  Fill = 88% in all cases.  (a) c = 1.20, N 
= 2, 61518 shapes.  (b) c = 1.27, N = 2, 3935 shapes.  (c) c = 1.34, N = 2, 783 shapes.  (d) c = 1.41, N = 2, 269 
shapes.  In (a) the smallest squares are not resolved. 

7. Effect of the Parameter N. 

The effect of increasing N is that the first shape is smaller and a larger number of placements is needed to 
achieve a given fill. 
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Fig. 9  Circle fractals with different N values.  Log-periodic color.  c = 1.3, fill = 90% in all cases.  White gasket.  (a) 
N = 1, 1224 shapes; (b) N = 2, 3297 shapes; (c) N = 4, 7580 shapes; (d) N = 8, 16265 shapes. 

8. Self-Correlation.  Rings. 

There can be strong self-correlation for a single shape.  This can be seen particularly well with rings.  It 
was somewhat surprising (to me, anyway) that rings can be fractalized, but the algorithm ran smoothly.  
Here the correlation takes the form of "nesting" of smaller rings inside the bigger ones.  It is quite obvious 
here that the nesting arises from the constraints of previous placements.  Correlation is always stronger 
for higher c values. 
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Fig. 10  Fractalized rings.  c = 1.25, N = 2, 1500 shapes, fill = 82%.  The inner radius is 2/3 of the outer radius.  Log-
periodic color.  There is very strong self-correlation in the form of "nesting" of the rings.  Black gasket, inclusive 
boundaries.  A nice illustration of the constrained randomness of the algorithm. 

9. Two Alternating Shapes Mixed.  Mutual Correlation and Clustering. 

An interesting discovery is that one can place two shapes alternating, as long as the area rule is satisfied.  
One might, for example, use circle-square-circle-square- … .  Each shape would have the area specified 
for the i-th shape (see sec. 2). 
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Because the placement positions are constrained by all of the previous placements one finds a strong 
correlation in the positions of the two kinds of shape.  For a mix of "up" and "down" triangles there is 



very strong anti-correlation.  An "up" triangle will have hardly any "up" triangles for nearest neighbors7 
[7] but mostly "down" ones. 

 

Fig. 11  Triangles with two orientations.  The black triangles can be thought of as "up arrows" and the white ones as 
"down arrows".  c = 1.35, N = 6, 3300 shapes, fill 89%.  There is very strong anti-correlation of neighbors.  Almost 
all the near neighbors of a black triangle will be white triangles and vice versa.  Inclusive boundaries, red gasket. 
                                                 
7 In crystallography or tessellations one can readily define nearest neighbors as those elements all lying at the same 
shortest distance from the center of a given element.  It is evident that in these fractals a given shape can have many 
nearest neighbors (in the limit, an infinite number), and that none of them will be at the same distance as any other.  
A proper statistics-based definition of "nearest neighbor" remains to be found for these fractals. 
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For mixed circles and squares there is a positive correlation.  Squares are placed most frequently near 
other squares, and the same for circles.  Clustering is another description of the arrangement.  Study of the 
results shows that more trials occur for circle placement than for square placement, indicating that squares 
are the more "packable" of these shapes.  This is a statistical property of the square not contemplated by 
the Greeks. 

 

Fig. 12  Mixed circles (white) and squares (black).  c = 1.35, N = 8, fill = 90%, 5425 shapes.  Inclusive boundaries, 
red gasket.  Note the strong mutual correlation, with circles mostly adjacent to circles and squares to squares.  While 
the areas are "mostly white" or "mostly black", the minority shapes interpenetrate the others at all length scales.  The 
degree of clustering depends strongly on the exponent c.  The placement of the first few shapes strongly affects the 
overall pattern. 
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9. More Than Two Random Variables. 

In the examples discussed above there are two random variables, x and y.  It is possible to consider 
additional random variables.  For example one can create a fractal with squares having different 
orientations8, where the orientation angle is randomly chosen at each trial.  Here there are three random 
variables.  There is a clustering effect here.  The first few large squares placed tend to set the orientation 
angle for the placements near them.  The orientation effect is most pronounced for high c values. 

 

                                                 
8 This was first studied by Paul Bourke. 

Report 6 rev 5 -- Jan. 2013 -- John Shier -- Statistical Geometry Described -- p. 15 

 



Fig. 13.  Squares with random orientation.  c = 1.43, N = 3, 93% fill, 1500 squares.  There is a special color scheme 
where the color is a continuous periodic function of rotation angle, so that squares of the same color have the same 
orientation.  One sees "islands" of similar colors which show self-correlation.  The first large squares to be placed 
strongly influence the orientations of later squares.  Periodic boundaries, black gasket. 

In another study [8] the shapes were defined in local polar coordinates with each shape defined by three 
phase angles so that no two shapes are the same.  There are thus five random variables.  The algorithm ran 
smoothly, leading to the conclusion that self-similarity or congruence of the shapes is not a requirement.  
One need only obey the area rule. 

10. Run-Time Behavior. 

What happens as the algorithm is executed?  In particular, how many trials does it take to place some 
number of shapes?  Does the algorithm halt?  How is this behavior affected by c, N, shape, etc.?   

 

Fig. 13.  Scheme for halting probability as a function of c.  The values c1 and c2 will be high for simple shapes 
(circle, square) and low for sparse, sprawling shapes (e.g., quadcircle). 

Halting has been found to obey the pattern shown in Fig. 13.  This behavior has been studied in detail for 
the case of circles fractalized within a square as shown in Fig. 14.  The most interesting feature is that 
there is a range of c values for which the algorithm never halts.  This has been seen many times in the 
work on these fractals, but there is no deductive proof of it. 
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Fig. 14.  Halting probability data.  The points trace out a curve resembling Fig. 13. 

The data of Fig. 14 has quite good statistical accuracy as 2000 runs were made at each c value.  The raw 
data for the number of halting events is given in two rows above the graph.  For example, there were no 
halting events for c = 1.28, and 1969 of them for c = 1.48.  The numbers near the top give a breakdown of 
the number of placements at which the first halt event occurred.  For example the column headed 9 refers 
to the 9th c value (c = 1.44) and we see that there were 1101 halting events with between 1 and 10 
placements, 125 halting events between 11 and 20 placements, etc.  This illustrates the observed fact that 
when halting occurs it almost always takes place during the early placements.  If a run "survives" past 100 
placements it will usually run on indefinitely. 

We next turn to the question "For nonhalting runs, how many trials does it take to place n shapes?"  Data 
on this is given in  Fig. 15. 
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Fig. 15.  Run-time records.  N = 1 in all cases.  The vertical coordinate is log10(ncum) where ncum is the cumulative 
number of trials needed to place n shapes.  The horizontal coordinate is log10(n).  For the circles c = 1.20, 1.25, 1.30, 
1.35, and 1.40 from bottom to top.  Similarly for the squares c = 1.20, 1.25, 1.30, 1.35, 1.40, and 1.45.  Five runs are 
plotted for each c value. 

• For large n, the data follows a straight line, showing that ncum(n) follows a power law in n, i.e., 
ncum(n) = Knf.  The parameters K and f can be estimated from the data.  They will have an 
uncertainty associated with the randomness of the process. 

• For any number n of shapes to be placed one can calculate an expected number m of trials that 
will be needed.  This is the basis for saying that the process does not halt.  Although m may be 
huge, it is finite. 

• It evidently takes fewer trials to place n squares than to place n circles when c is large.  For the c 
= 1.2 data shape makes little difference. 

• In all cases studied, f ≥ c. 
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• The data becomes quite noisy for large c.  It is thought that this noise sets an upper limit for 
usable c values. 

This subject is discussed in more detail in [9], where relationships are found between f and c for circles 
and squares. 

11. Fractal Dimension. 

Based upon work with Apollonian9 two-dimensional random fractals [10] it can be concluded that the 
fractal dimension D for two-dimensional statistical geometry fractals is 

      
c

D 2
=  

It also follows that D is independent of N and the same for any shape. 

It is not obvious that the formulation of [10] is also valid for the non-Apollonian case, but I see nothing in 
the paper that precludes it.  There is also data on the fractal D for circles found by box counting, supplied 
by Paul Bourke, which agrees with this equation within statistical uncertainty. 

The fractal dimension formula D = 1/c for the 1D case agrees well with box counting.  If the equations of 
[10] are assumed to be valid for any number of physical dimensions, it then follows that D = 3/c for the 
3D case. 

12. Invariance. 

Invariance properties are always interesting.  What properties of these fractals remain the same for any 
running of the algorithm, i.e. for any sequence of random numbers? 

The first and most obvious item is that the distribution of shape areas (or volume or length parameters) is 
invariant.  It is specified deterministically and will be the same for every run.  The fractal dimension is 
also invariant.  And the dimensionless average gasket width b(c,N,n) which for circles is 

 
))1()((
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(discussed in more detail in [5]) is also invariant. 

13. Conjectures and Problems. 

Conjectures.  All of these are supported by computational experiments, but lack any proof. 

1. The algorithm runs "to infinity" without halting, with ideal mathematical numbers10. 

                                                 
9 The paper describes procedures for finding fractal D from computed sets of Apollonian fractal shapes.  What I 
have used from this paper is equation (2).  I have created data sets for the gasket area versus n and fitted it as they 
indicate to find β.  Their equation (1) leads to the same result. 
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2. A power law is the sole, unique functional rule for area versus placed shape number i if the result is to 
be space-filling. 

3. The algorithm works for any shape11 or shape sequence if the area rule is followed. 

Problems.  Some of these may be beyond solution. 

1. Find a mathematical scheme for describing the mutual correlation of the shape positions. 

2. Define a numerical quantity which could be called the "packability" of a given shape, from which other 
properties could be calculated. 

3. Find a way of computing parameters such as maximum c, exponent f, etc. from the shape alone. 

4. Find a mathematical scheme for defining, identifying, and counting the nearest neighbors of a given 
shape. 

In some cases the statements found here may be seen to conflict with the author's previous writings.  This 
simply reflects closer study of the subject, which has caused some ideas to be scrapped and replaced by 
better ones. 
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