
Holes in Circle Fractals.  Statistics 
A statistical study has been made of the "holes" in circle "statistical geometry" fractal patterns [1]-[3] (see 
Appendix A).  Figure 1 shows an example of a computer run made for this purpose.  

 
Fig. 1.  A circles-in-circle fractal pattern.  The purple circles are the 252 circles placed by the algorithm.  (c=1.4, 
N=1, 91.2% fill).  The small circles inside the pattern are the 502 "holes" where the next circle can go.  The next 
circle is drawn (in green) at proper scale up and to the right of the pattern as a comparison.  The green holes are 
those large enough for the next circle to fit.  The red holes are "internal" holes, not tangent to the bounding circle.  
The orange holes are those which are tangent to the bounding circle.  The dark blue circle is the smallest placed 
circle. 
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1. Introduction.  Methods. 

One of the interesting questions about the statistical geometry algorithm is the matter of "available places 
for the next shape" and the statistical distribution of their sizes.  For circles these are simply the tangent 
"Apollonian" circles which fit within the available space between triplets of placed circles (Fig. 1). 

The holes found evidently include the largest available spaces for a next placement, but it can be seen 
from Fig. 1 that there is available space for yet-smaller circles which is not included by this search 
process. 

One can think of the process of placing circles as a progression in which the placement of a new circle 
fills one hole and creates three new ones, for a net gain of 2.  It is found that in fact the number of holes is 
2(n-1) when n circles have been placed. 

The object is to find the probability distribution function for the hole diameters.  Statistical accuracy has 
been improved by making many runs and combining the results. 

The construction of a circle tangent to three given circles when the three are not mutually tangent1 is not a 
simple problem and as far as I can determine there is no algebraic solution to the three nonlinear 
equations which must be solved.  Here the solution has been found by developing initial estimates of the 
position and radius of the "hole" circle and using the Newton-Raphson2 method to refine and improve the 
values.  In practice this proved to be quite rapidly convergent and the estimated accuracy of the hole x, y, 
and r is ±.00001 inches in a 10x10 inch drawing area.  The iterative computations were done in double 
precision arithmetic. 

2. The Distribution of Hole Radii. 

The hole size distribution has a bearing on the question "Will the algorithm stop?" 

If the available places are so few or so small that random search is unlikely to find them the search will 
take a long time.  A calculation of this kind allows one to compute the probability for placement of the 
next circle, and to estimate the average number of trials needed, which in turn can be compared to actual 
run data. 

Repeated runs were made with c=1.45, N=1, and 91.2% fill (252 circles) and also with 84.4% fill (126 
circles).  These parameters imply a tightly-packed highly-correlated fractal where the number of big-
enough holes is limited at any step.  Figure 2 shows the results in the form of a histogram. 

It should be kept in mind that this is an average distribution, and that the number of "big enough" holes 
will vary from run to run.  There may be a finite probability that under some conditions the process 

 
1 For the case of 3 mutually tangent circles "Soddy's formula" provides an elegant result. 

2 The one-dimensional version of this iterative method for solving nonlinear equations is covered in most 
introductory calculus texts as "Newton's method".  Many texts and internet references cover the n-dimensional case, 
often under the heading of "nonlinear regression" (as applied to curve fitting).  The complex-number case is used in 
generating the "Mandelbrot set" and other Julia sets. 



arrives at a given point and there are no available holes due to the fluctuations of the random numbers.  
Experience suggests that this is most likely to happen when c is large and n is small, and examples of this 
form of stoppage seem to occur fairly often when c ≅ 1.5 (near its upper limit).  Stoppage for "no hole" 
with high c usually occurs in the first few placements. 

 

Fig. 2.  Histograms of the tangent hole radii with the c and N values stated, for a circle fractal as in Fig. 1.  The 
vertical red line shows the radius of the next circle needing to be placed.  In all the cases studied there were 
substantial numbers of holes with radii big enough to accommodate the next circle.  The left histogram is for 126 
circles placed (84.4% fill), while the right one is for 252 circles placed (91.2% fill). 

3. Discussion of the Results. 

The hole-radius probability distribution function3 for 126 placed circles (left) looks like a typical 
"skewed" p.d.f. that one might find in statistics textbooks. 

The hole-radius probability distribution function for 252 placed circles (right) is somewhat different and 
does not appear (within sampling error) to be any of the standard distributions found in textbooks.  It tails 
off rapidly for small r and for r values larger than the "next radius".  In the central region it appears to 
have a slow and almost linear drop.  The tail for large r appears to be "exponential-like" (with statistical 
accuracy).  The large-r tail likely extends beyond the range4 of the data shown here. 

In both cases a substantial fraction of the holes are larger than the next to-be-placed circle. 
                                                 
3 This is, of course, only sampled data.  The "true" continuous p.d.f. can be defined as the average over all possible 
configurations of n randomly-chosen nonoverlapping circle positions with the given c,N.  In statistical physics such 
an average is called an "ensemble" average (over all "states"). 

4 The largest hole radii will be quite rare and will correspond to the (unlikely) case where the circles are nearly 
tangent leaving room for a large hole somewhere.  A very large data sample would be needed to establish the 
character of this tail accurately. 
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If one thinks of a continuous process of adding circles, the filling of existing holes removes area from the 
right-hand side of the histogram (to the right of the red line) while it creates additional area to the left of 
the red line. 

How do these distributions relate to the dimensionless gasket width b(c,n)?  It is stated [4] that b(c,n) is 
the "average" width5 of the gasket.  Here we can define a different dimensionless width of the gasket -- 
the width of the p.d.f. for r.  For comparison purposes I take this to be the maximum r minus the 
minimum r. 

For 126 circles placed (distribution width)/(r of next circle) = 1.08    (b(c,n) = .197) 

For 252 circles placed (distribution width)/(r of next circle) = 1.15    (b(c,n) = .188) 

This suggests that the dimensionless hole-radius distribution width is about 5 times the value of b(c,n).  A 
more precise comparison of this data would require a more precise definition of just how the distribution 
width is to be determined from the data in Fig. 2. 

The dimensionless ratio (maximum r of the distribution)/(r of next circle) appears to track rather closely 
with b(c,n); it has a value around 1.39 for 126 circles placed.  This is further evidence that the process 
does not stop, especially for large numbers of placed circles where the hole distribution becomes quite 
dense. 

4. References. 
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Appendix A. The Statistical Geometry Algorithm. 

It has been found [1]-[3] that it is possible to create fractal patterns of a wide variety of geometric shapes 
by the following algorithm: 

 
5 The definition of b(c,n) is (total gasket area)/(total gasket perimeter)(diameter of next circle to be placed).  One 
needs to be careful in thinking about this dimensionless quantity as an average because the gasket is neither a two-
dimensional nor a one-dimensional object but a fractal. 
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redefined areas is just A. 

4. Let i = 0.  Place a shape having area S0 in the area A at a random position x,y such that it falls entirely 
within area A.  Increment i.  This is the "initial placement". 

5. Place a shape having area Si entirely within A at a random position x,y such that it falls entirely within 
A.  If this shape overlaps with any previously-placed shape repeat step 5.  This is a "trial". 

6. If this shape does not overlap with any previously-placed shape put x,y and the shape dimensions in the 
"placed shapes" data base, increment i, and go to step 5.  This is a "placement". 

7. Stop when i reaches a set number, percentage filled area reaches a set value, or other. 

One will note that the dimensions of the shapes are nowhere specified.  They are calculated from the 
areas.  A very wide variety of shapes have been found to be "fractalizable" in this way. 

The parameters c and N can have a variety of values.  The parameter c is often in the range 1.2-1.4 with a 
largest usable value around 1.51.  N can be 1 or larger, and need not be an integer. 

By construction the result is a space-filling random fractal -- if the process never halts.  Available 
evidence [1]-[3] says that it does not.  The power law area sequence ensures that it has the fractal 
"statistical self-similarity" (scale-free) property.  And the random search ensures that no two circles will 
ever touch, so that the "gasket" is a single continuous object. 

 

                                                 
6 The definitions of the Riemann and Hurwitz zeta functions can be found in Wikipedia. 
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