
A Different Form of the Algorithm.
1. Introduction.

Most of the work on the algorithm to date has been done with a continuous range of sizes for the
shapes, i.e., when dealing with circles they all have different radii which obey a power law. Is it possible
to group the circle radii such that there are n0 circles of radius R0, n1 circles of radius R1, … ? This offers
the possibility of having circles of sufficiently different size that that the eye can see the difference.

Conceptually one can do this by defining areas Am (m = 0, 1, 2, …) in the usual

way cm Nm
A

Nc
A

)(),(
1

+
=
ζ

(A is the total image area) except that these areas are now to be considered

as the areas for groups of circles.
One further defines a circle radius for group m by)/exp(0 λmrArm −= . The value of this is

that each smaller group of circles has a radius which is a fixed fraction of the next-larger one, so that the
eye can (in principle) see the difference. The number nm of circles having this radius is

()()5./int 2 += mmm rAn π , where int() is integer truncation. nm of these circles no longer have area Am

because of the truncation, so one finds a new radius Rm by
m

m
m n

AR
π
1

= .

The algorithm proceeds by placing n0 circles of radius R0, n1 circles of radius R1, etc. according to
the usual random placement procedure. It can be seen that the circles are "space-filling" as the number of
them goes to infinity, as in the usual case (the usual case is defined in the Appendix).

2. Results.

John Shier -- Grouped Circles -- p. 1

For this image c = 2.9, N = 5, r0 = .7, λ = 2.6, and the fill is 94.3%. One can see that there is a
larger set of parameters to play with. The circles are colored in a periodic way with a unique color for
each circle size.

Here we see an expanded view of the upper left corner of the previous image, in which even the

smallest circles are resolved.

3. Discussion.

The difference between this and the usual algorithm lies entirely in the setup procedure for
choosing the circle size versus circle sequence number.

The typical run history with this method differs substantially from the usual algorithm. The
algorithm does not run successfully for some parameter choices. The typical problem is that somewhere
in the first few groups the placement algorithm is simply unable to place one of the circles1. The first
circle in the group will have an easier placement than the last one, since the circle size sequence within a
group does not follow the ideal power law.

Once the algorithm passes through this "bottleneck", placement becomes easier, and the average
number of trials per placement actually starts to fall2 slowly for the smallest circles.

While the upper limit for c in the usual algorithm is about 1.5 for circles, this limit does not apply
to the grouped case.

It is not obvious how the fractal dimension D relates to the parameters c, N, r0, λ.
Images such as those shown here offer an interesting way to convey the notion of "statistical self-

similarity" to the viewer.

John Shier
November 2011

1 It is reasonable, based on existing results, to suppose that this technique also works for shapes other than circles.

2 If one wishes to create an image with a very large number of circles this may be an attractive way to do it, since the
usual algorithm gets slower and slower for large n.

John Shier -- Grouped Circles -- p. 2

Appendix. The Usual Algorithm Stated.

The fractals of interest here are generated using the following algorithmic rules (for 2 Euclidian
dimensions):

1. Create a sequence of areas Ai equal to ...,
)3(

1,
)2(

1,
)1(

1,1
cccc NNNN +++

 where c and N are

constant parameters. Choose an area (square, rectangle, circle, …) A to be filled.
2. Sum the areas Ai to infinity, using the Hurwitz zeta3 function

 ∑
∞

= +
=

0)(
1),(

i
ciN

Ncζ

3. Define a new set of areas Si by ci iNNc
AS

))(,(+
=
ζ

. It will be seen that the sum of all these

redefined areas is just A.
4. Let i = 0. Place a shape having area S0 in the area A at a random position x,y such that it falls
entirely within area A. This is the "initial placement". Increment i.
5. Place a shape having area Si entirely within A at a random position x,y such that it falls entirely
within A. If this shape overlaps with any previously-placed shape repeat step 5. This is a "trial".
6. If this shape does not overlap with any previously-placed shape, store x,y and the shape
dimensions in the "placed shapes" data base, increment i, and go to step 5. This is a "placement".
7. Stop when i reaches a set number, percentage filled area reaches a set value, or other.

The linear dimensions of the shapes are nowhere specified. They are calculated from the area for the
shape of interest. A very wide variety of shapes have been found to be fractalizable in this way. This is a
very simple algorithm, easily stated in a few lines of text. While the algorithm is simple, it is able to
produce complicated4 results.

3 The definitions of the Riemann and Hurwitz zeta functions can be found in Wikipedia. The Riemann zeta function
is historically older than the Hurwitz function, and is the special case where N = 1. In my images N is usually taken
to be an integer, but according to the definition of ζ(c,N) it can be any real number ≥ 1. The Riemann zeta function
has been much studied in connection with number theory, but it is not evident that such studies have any relevance
here.

4 This is a characteristic of many iterative or recursive procedures such as cellular automata and some fractals.
Random walk, with its vast number of variations of both form and detail provides another example.

John Shier -- Grouped Circles -- p. 3

